当前位置:首页 > 教学资料 > 教学反思

《平行四边形的面积》教学反思

时间:2024-09-15 09:53:35
《平行四边形的面积》教学反思

《平行四边形的面积》教学反思

作为一位优秀的老师,我们都希望有一流的课堂教学能力,写教学反思可以很好的把我们的教学记录下来,那么问题来了,教学反思应该怎么写?下面是小编整理的《平行四边形的面积》教学反思,希望对大家有所帮助。

《平行四边形的面积》教学反思1

这堂课能围绕教学目标层层展开,先从身边的情景引入,激发学生探求新知的兴趣;接着让学生猜想平行四边的面积可能怎样求?再通过活动单一的内容用数格子的方法验证。学生都能数出它们的面积,在这个环节中学生做的很好。

接下来又用转化方法进行再次验证,仍然是以小组合作的形式进行,让学生自己动手画一画、剪一剪、拼一拼推导出平行四边形的面积计算公式。然后让学生到前面演示整个操作过程。在这过程中,我能用严密、准确地、有逻辑性的语言,富有层次性的问题层层深入的引导学生来探究、发现规律,得出结论,效果良好。接着我又向学生介绍了不一样的几种方法,可以让学生感受到方法很多,也可以让他们有再试一试的想法,可以可以发展他们的创新思维。而且,形象的多媒体课件为公式的推导起了一个很好地作用。

课件还很好的演示了平行四边形转化成长方形的过程,看起来很直观。但是本节可课也有不足之处,在书写板书时最后的那个平行四边形画的不好看,线没有画直;还有最后望了否定学生的另一种猜想边×边的方法不行。在今后的教学中我一定注意书写板书,注意课堂的完整性。

《平行四边形的面积》教学反思2

1.先让学生回忆学过了哪些平面图形,想一想长方形的面积是怎样求的,做到用“旧知”引“新知”,把“旧知”迁移到“新知”中,渗透了转化的思想方法。

2.注重学生数学思维的发展,设计了剪一剪、拼一拼等学习活动,让学生在活动中探索出平行四边形的面积公式。

3.注重了师生互动、生生互动,这节课始终面向全体学生,以学生为主体,教师为主导,通过教学中师生之间、同学之间的互动关系,产生教与学之间的共鸣。师生之间应该互有问答,学生与学生之间也要互有问答。

《平行四边形的面积》教学反思3

平行四边形面积的计算是在学生学习了长方形的面积和平行四边形认识的基础上教学的,平行四边形的面积公式推导方法的掌握,对学习后面三角形、梯形面积公式具有重要的作用,所有平行四边形面积公式的推导,是本节课的重点。教学中通过把一个可拉动长方形铁框拉成一个平行四边形,使学生看到长方形和平行四边形之间的内在联系,为后面学习新知识打下基础。新课突出了三个环节,一是引导学生初步探究,通过提出一个客观的实际问题,如果有一块很大很大的平行四边形草地,还能用数方格的方法计算它的面积吗?小组讨论。用问题激起学生再次探究,可以把要探究的平行四边形转化成我们学过的什么图形呢?二通过学生实际操作,用不同方法把平行四边形转化成长方形,并通过操作,观察,找出平行四边形与所拼的长方形的内在联系,在此基础上,推导出平行四边形的面积计算公式。三是引导学生会用公式正确计算平行四边形面积,解决实际问题,在练习中,一定要做到一练一小结,提醒学生要注意的问题。

平行四边形的面积公式是几何图形面积计算第一次运用“转化”思想方法推导得出的。因此,本节课让学生形象直观地明白什么是“转化”,深刻理解“转化”的本质,就显得尤为重要。对于“转化”思想,本节课不在是渗透的朦朦胧胧,而是把这种学习方法明朗化,让“转化”本领成为学生思维的“主角”,并当作学习的一个重点让学生掌握。我首先出示三个图形让学生通过比较,在直观的基础上,利用图形的转化,直接说出了它们的面积,渗透了转化的数学思想方法。这样,学生面对“计算平行四边形面积”这一新问题,就很自然地得到了两种猜想:用平行四边形相邻两边相乘(以前学习的长方形面积计算公式等知识的负迁移)和用平行四边形的底乘以高(转化思想方法的运用)。进而,教师提出问题:同一个平行四边形的面积怎么会有两个答案呢?激发学生进一步去探究。迫使学生动脑筋想办法,用割补方法进行问题转化,验证了用“底乘高”的猜测是正确的,通过观察图形的动态变化,从比较中发现用“相邻两边相乘”是错误的。学生在这一实践活动过程中获得割补转化的数学思想方法。在练习阶段的“你会求阴影部分的面积吗?”,不仅是巩固新知,而是将“转化”本领内化成解题技巧。

这节课,采用先让学生“大胆猜测”,再进行“小心求证”的教学思路,教师有意识地把经历“猜想与验证”蕴涵在探究平行四边形面积公式的数学活动中。当学生对平行四边形的面积计算获得两个合理的猜想后,教师不做否定,而是要求学生对自己的想法进行检验,学生通过思维顿悟、教师的直观演示,自己发现错误的原因,这不但让学生对知识理解更透彻,影响更深刻,而且给学生学生探究发现知识的方法指导。这样的过程,既不同于由一般到特殊的演绎过程,也有别于由具体到一般的归纳过程。它是一种发现并填补认知的空隙,即定向探索解决问题的研究过程,这符合数学知识发现的一般规律,因而具有比较一般的方法论意义。这样的数学思维方法的运用,有效地训练了学生综合运用思维方法获取知识的能力,同时也受到了科学思想方法的启蒙。

《平行四边形的面积》教学反思4

《平行四边形的面积》一课,是北师大版数学五年级上册第四单元第三课的内容。在这节课中,我主要讲授的第一课时的内容。在教学中,我通过让学生动手做一做,感受“转化”的思想,进而理解平行四边形的面积计算方法。反思这节课,我总结了成功的经验以及不足之处,具体概括为以下几点:

优点

一、注重学生的课前预习工作,让学生做好了学习新知的准备

在教学前,我先让学生预习《平行四边形的面积》一课。通过预习,学生知道了这节课的学习重点(掌握平行四边形的面积计算方法)。在学习时,每位学生都准备好了学具(平行四边形卡纸、剪刀)。

二、注重课堂上学生的自主学习,让学生成为学习新知的主人

在探究平行四边形的面积计算方法时,我引导学生思考“如何将平行四边形转化成已经学过的图形,再来求面积?”然后组织学生独立操作(剪、拼),进而引导学生思考“拼好后的长方形与原平行四边形有什么关系?”在这些活动中,学生都认认真真地动手剪拼,并在小组内交流各自的想法。每位学生的动手操作能力、语言表达能力、逻辑思维能力都得到充分的锻炼。再组织在全班交流中,学生的语言表达能力、逻辑思维能力又得到了进一步的提高。由此,对平行四边形的面积计算方法的由来也就理解的相当透彻。教学效果很好。

三、注重多媒体辅助教学设施的应用,让学生在各种新奇的环境下主动学习。

在课前,我编辑了切合学生心理特征的教学课件。在课堂上,极大的吸引了学生的注意力。使学生纷纷主动地在课件中寻找问题,解决问题。

不足与相应措施

学生之间的评价太少,以至于学生看不到自己与他人的差距。在今后 ……此处隐藏9008个字……,让“转化”本领成为学生思维的“主角”,并当作学习的一个重点让学生掌握。

教师首先出示三个图形让学生通过比较,在直观的基础上,利用图形的转化,直接说出了它们的面积,渗透了转化的数学思想方法。这样,学生面对“计算平行四边形面积”这一新问题,就很自然地得到了两种猜想:用平行四边形相邻两边相乘(以前学习的长方形面积计算公式等知识的负迁移)和用平行四边形的底乘以高(转化思想方法的运用)。进而,教师提出问题:同一个平行四边形的面积怎么会有两个答案呢?

激发学生进一步去探究。迫使学生动脑筋想办法,用割补方法进行问题转化,验证了用“底乘高”的猜测是正确的,通过观察图形的动态变化,从比较中发现用“相邻两边相乘”是错误的。学生在这一实践活动过程中获得割补转化的数学思想方法。在练习阶段的“你会求阴影部分的面积吗?”,不仅是巩固新知,而是将“转化”本领内化成解题技巧。在课堂小结时,我不满足于学生的认识仅仅在对具体知识的获得上,而是启发学生提炼出数学的思想方法。教师最后的评价,既给学生以鼓励,更给学生以导向,导向在数学的思想方法上。因为数学的思想方法是数学的灵魂,学生拥有了它,其主动获取知识的能力将会得到提高,创造力的发展就有了基础。

二、以探索解决问题为主线,运用“大胆猜想,小心求证”的数学学习方法,培养学生探索精神和探究能力。

现代科学的探索活动,常常是人们在已有的科学知识的基础上,发挥人的主观能动性,通过想象、直觉等多种思维方法,提出猜想性假说,建立起新的概念和理论框架,推出具体结论,最后通过实验予以验证。这种“猜想—验证”的方法已成为科学探索中常用的方法。

这节课,采用先让学生“大胆猜测”,再进行“小心求证”的教学思路,教师有意识地把经历“猜想与验证”蕴涵在探究平行四边形面积公式的数学活动中。当学生对平行四边形的面积计算获得两个合理的猜想后,教师不做否定,而是要求学生对自己的想法进行检验,学生通过思维顿悟、教师的直观演示,自己发现错误的原因,这不但让学生对知识理解更透彻,影响更深刻,而且给学生学生探究发现知识的方法指导。

这样的过程,既不同于由一般到特殊的演绎过程,也有别于由具体到一般的归纳过程。它是一种发现并填补认知的空隙,即定向探索解决问题的研究过程,这符合数学知识发现的一般规律,因而具有比较一般的方法论意义。这样的数学思维方法的运用,有效地训练了学生综合运用思维方法获取知识的能力,同时也受到了科学思想方法的启蒙。

《平行四边形的面积》教学反思14

新课标指出有效的数学活动不能单纯地依靠模仿与记忆,教师要引导学生经过动手实践、自主探索、合作交流等学习方式真正理解和掌握基本的数学知识、技能、思想和方法。在《平行四边形的面积》一课的教学中,我经过让学生动手实践,自主探究,让学生经历了知识的构成过程。反思这节课,我总结了一些成功的经验和失败的教训,具体概括为以下几点:

一、注重数学专业思想方法的渗透。

我们在教学中一贯强调,授人以鱼,不如授人以渔,在数学教学中,就是要注重数学专业思想方法的渗透。要让学生了解或理解一些数学的基本思想,学会掌握一些研究数学的基本方法,从而获得独立思考的自学本事。在这节课中,先让学生回忆平行四边形与长方形的联系,想一想长方形的面积是怎样求的?引出能够用数方格的方法来求平行四边形的面积。把这两个图形按每个格1平方米的方法来数,数的过程中提示学生:能够把不满一个格的按半个来数。学生数好以后,说一说数的结果。再让学生说说你是怎样数的?你发现了什么?有利于有本事的学生向转化的方法靠拢。

二、注重学生数学思维的发展

数学教学的核心是促进学生思维的发展。教学中,教师要想方设法地经过学生数学知识学习,全面揭示数学思维过程,启迪和发展学生思维,将知识发生、发展过程与学生学习知识的心理活动统一齐来。课堂教学中充分有效地进行思维训练,是数学教学的核心。在这节课中,设计了数一数、剪一剪、移一移、拼一拼等学习活动,逐步引导学生观察思考:长方形的面积与原平行四边形的面积有什么关系?长方形的长和宽与平行四边形底和高有什么关系?使学生得出结论:因为长方形的面积=长х宽,所以平行四边形的面积=底х高。学生掌握了平行四边形面积公式的推导方法,也为今后求证三角形、梯形等面积公式和其他类似的问题供给了思维模式。这个推导过程也促进了学生猜测、验证、抽象概括等思维本事的发展。

三、分层运用新知,逐步理解内化

对于新知需要及时组织学生巩固运用,才能得到理解内化效果。我本着重基础、验本事、拓思维的原则,设计了基础练习(算出下头每个平行四边形的面积。);提升练习(量出平行四边形的底和高的长度,并分别算出它们的面积。);

发散练习(下图两个平行四边形的面积相等吗?为什么?在这条平行线之间,还能够画出几种形状不一样而面积相等的平行四边形。)整个习题设计部分,题量虽不大,但却涵盖了本节课的所有知识点,题目呈现方式的多样,吸引了学生的注意力,使学生应对挑战充满信心,激发了学生兴趣、引发了思考、发展了思维。同时练习题排列遵循由易到难的原则,层层深入,也有效的培养了学生创新意识。

四、需要改善的地方

本节课的不足之处有:在进行把平行四边形转化为长方形时,书上虽只给出了两种方法,可是实际上有很多不一样的剪法,而我也只强调了两种,对于一个学生出现的比较特殊的剪法粗略带过。并且这个环节过后,忘记强调一下,要沿着平行四边形的高剪下,才能平移拼成一个长方形。让学生说的部分还是显得很仓促,自我急于把正确答案给出,这是迫切需要改正的。

教学是一门有着缺憾的艺术。做为教师,往往在执教后,都会留下或多或少的遗憾,只要我们用心思考,不断改善,我们的课堂就会更加精彩。

《平行四边形的面积》教学反思15

在整个教学过程本着以学生的发展为本的教学理念,让学生经历猜想——验证——得出结论活动,获得了成功的体验,学生的学习积极性和主动性得到了充分的发挥,同时也树立了自信心。

二、在这节课中,我设计了剪一剪、拼一拼、移一移等学习活动,逐步引导学生观察思考:长方形的面积与原平行四边形的面积有什么关系?长方形的长和宽与平行四边形底和高有什么关系?充分利用多媒体课件演示,形象、直观,使学生得出结论:因为长方形的面积=长乘宽,所以平行四边形的面积=底乘高。在此,我特别注意强调底与高应该是相对应的,通过观察、交流、讨论、练习等形式,让学生在理解公式推导的过程中学会解决问题。学生掌握了平行四边形的求证方法,也为今后求证三角形、梯形等面积公式和其他类似的问题提供了思维模式。这个求证过程也促进了学生猜测、验证、抽象概括等思维能力的发展。

另外,在课堂教学中主张以学生为主体,注重师生互动和生生互动。在这节课中,我能始终面向全体学生,以学生为主体,教师为主导,通过教学中师生之间、生生之间的互动关系,产生教与学之间的共鸣。

由于课前的预设过高估计学生,导致习题配备难度有些大,个别学生完成不理想,我在以后的教学中要特别注意。

《《平行四边形的面积》教学反思.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式